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Predicting Steel Product Order Quantity Using LSTM
(Long Short-Term Memory) Machine Learning Technique
- Demand Forecasting Using Multivariate Time Series Data -*

Jihoon Kim**
June-Suh Cho™**

This study presents a novel approach to the demand forecasting problem in the steel industry,
utilizing a multivariate time series forecasting model, specifically the Long Short-Term Memory (LSTM)
neural network. The steel industry places a high value on demand forecasting due to the complexity of
its production processes, increasing lead times, and market uncertainty.

The proposed methodology uses machine learning techniques to develop a multivariate LSTM model
and evaluates its performance using various indicators. Additionally, to align with the unique characteristics
of the steel industry, we performed feature selection based on the insights of industry experts.

In conclusion, the LSTM model developed in this study outperforms existing demand forecasting
methods. Specifically, it accurately reflects complex market trends and the characteristics of the steel
industry, enabling more accurate demand forecasting.

This study presents a novel solution to the demand forecasting problem in the steel industry, which is
expected to enhance the efficiency of production planning and inventory management.
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| . Introduction

The steel industry, which forms the back-
bone of manufacturing worldwide, is a vital
sector that supplies raw materials to various
industrial fields, including construction, au-
tomobiles, shipbuilding, and machinery. Steel

products undergo a complex manufacturing

process comprising more than five stages, from
iron ore smelting to plating, depending on the
product’s composition and characteristics. In
particular, the steel industry is not a supply
chain that responds to sudden orders because
it necessitates planned production due to its
minimum production volume, large-scale fa-
cilities, and diverse product line. Additionally,

because the lead time is at least two months,
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if the order is not placed promptly, it may
take more than three to four months after
the product is ordered.

This study targeted small and medium-sized
companies that manufacture corrugated steel
pipes. A corrugated steel pipe is formed by
assembling hot-rolled steel into a corrugated
shape and then coating it as needed. It has a
relatively high strength, durability, and eco-
nomic efficiency. Due to these characteristics,
corrugated steel pipes are utilized in the con-
struction of roads, railways, and airports, as
well as in various civil engineering projects,
including bridges, tunnels, drainage ditches,
and industrial piping systems. It is an in-
dustry that attracts attention as its use in-
creases in infrastructure construction in each
country. Due to the diverse fields of use for
corrugated steel pipes, manufacturers must
respond promptly to fluctuations in demand
across various industries. Delivery is consid-
ered as important as unit price and quality in
winning contracts.

Numerous factors, including economic vola-
tility, policy changes, and fluctuations in raw
material prices, influence the steel industry.
It has the characteristic that causes significant
fluctuations in demand, according to these
changes. In particular, with the increasing
uncertainty in the global economy, demand
forecasting for steel products is becoming more
important. Moreover, the production process
of steel products is complex and resource-
consuming, making it difficult to control pro-

duction quickly. Therefore, it is essential to

accurately predict the demand for steel prod-
ucts and establish production plans in advance.
This study aims to predict the optimal order
quantity of hot-rolled coil used in the manu-
facture of corrugated steel pipe. Hot-rolled
coil is a crucial steel form and a vital raw
material for manufacturing corrugated steel
pipes. Corrugated steel pipe manufacturers
can create effective production plans by fore-
casting demand for hot-rolled coils, efficiently
purchasing raw materials, and effectively
managing inventory.

Make-to-order (MTO) is a manufacturing
method that produces products as soon as an
order is received. It is mainly used in the
corrugated steel pipe industry. (Schroeder,
2013) This method’s biggest advantage is
minimizing product inventory and increasing
production efficiency. However, this approach
has certain challenges, including ordering raw
materials and managing inventory. Corrugated
steel pipe manufacturers must establish ef-
fective strategies to maintain a reasonable
level of raw material inventory while ensuring
a smooth production process for orders. It is
called safety stock and can be said to comple-
ment the weaknesses of the order production
method. As one of these strategies, accurately
predicting the order level of hot-rolled steel
sheets is crucial to purchasing raw materials
and managing inventory effectively.

The company subject to this study determines
the timing of ordering below the average in-
ventory level based on average consumption,

the highest inventory volume, and the safety
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stock volume, and calculates demand linearly.
However, demand behavior is non-linear, and
the only way to deal with the rapidly rising
order volume in the early stages of a project
is to delay delivery.

It takes three months from steel manu-
facturing through the toll processing process
to stocking at the factory. A high safety stock
is needed to respond to unexpected demand.
However, inventory management fails due to
the high price per unit and high inventory
costs, which are characteristics of steel products.
There is a risk that small and medium-sized
businesses may not be able to cover costs and
go bankrupt. On the other hand, there are
quality disadvantages, such as surface oxida-
tion or deterioration that can occur during
long-term storage. Therefore, from a quality
control perspective, only an appropriate level
of raw material inventory must be maintained.

In addition, this paper helps to understand
research trends in raw material purchase
timing decisions that predict non-linear de-
mand through research on multivariate time
series forecasting using Long Short-Term
Memory (LSTM) models. It suggests future
research based on these findings. This paper
provides a methodology that can be applied
to demand forecasting in the steel industry
and other industrial fields. Based on this, it
aims to contribute to solving general prob-

lems in demand forecasting.

Il. Theoretical Background

2.1 Related Works

(Danilczuk et al., 2022: Towill & Christopher,
2010) presented the need for demand fore-
casting using the order production method.
(Kuthambalayan & Vera, 2020) proposed a
hybrid greedy and non-linear branch production
strategy and a mixed MTS-MTO production
system using semi-finished products, pursuing
a flexible yet efficient production method.
Martin reported that some companies have
attempted to improve their supply chain strat-
egies by incorporating demand forecasting into
traditional make-to-order methods. (Danilczuk
et al., 2022) Through this, we increased the
efficiency of the supply chain and minimized
risks in inventory management and raw ma-
terial purchases.

(Martinez-de-Albeniz & Simchi-Levi, 2005)
developed a demand forecasting model using
the portfolio approach of ordering contracts
using the order production method. (Das &
Kuthambalayan, 2022) reported a marketing
model related to lead time-dependent demand-
supply matching in the MTO method. A sol-
ution to the unconstrained stochastic non-
linear problem was presented by deriving a
mathematical model that finds the trade-off
between safety inventory cost, lead-time guar-
antee, product price, and operating profit.

Time series demand forecasting has been

studied in various fields, and machine learning-
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based forecasting, particularly in the era of
big data, is gaining recognition as a growingly
important area. (Seyedan & Mafakheri, 2020)
Among various demand forecasting techniques,
neural network-based demand forecasting was
adopted the most, followed by general re-
gression, time series analysis (ARIMA), and
support vector machine (SVM) decision tree
methods.

In machine learning-based forecasting mod-
els, nonlinear demand forecasting has im-
proved, but the accuracy of order forecasting
remains a significant issue. (Seyedan &
Mafakheri, 2020; Rivera-Castro et al., 2019)
Various methodologies have been proposed,
such as the random forest, gray model, support
vector machine, and neural network. However,
among them, the methodology of using LSTM
(long short-term memory) has recently shown
notable results. (Dou et al., 2021) used LSTM
to predict demand for regional manufacturing
industries at the highest level compared to
other machine learning techniques.

(Moalemet et al., 2022) applied LSTM to
predict electricity demand at a steel mill and
showed higher prediction accuracy than ex-
isting methodologies. This paper demonstrated
that LSTM effectively learns complex patterns
over time and can accurately predict future
demand based on these patterns. Furthermore,
Kim and Jeong (2019) developed a demand
forecasting algorithm within a smart factory
using an advanced hybrid model that improves
forecasting performance by dividing existing

demand forecasting techniques into short-term,

mid-term, and long-term categories. In the
short term, predictions were made using a
combination of exponential smoothing, LSTM
in the medium term, and ARIMA in the long
term, and it was claimed that these methods
generally provided more accurate predictions.

Meanwhile, a study on demand forecasting
in cases where demand fluctuations are very
large (Kim & Jeong, 2019) predicted demand
for smart factories using the ARIMA method
and LSTM, and employed regularization tech-
niques to identify key factors that affect de-
mand forecasting for each CPU and server
semiconductor. The demand for the semi-
conductor cycle was predicted by deriving

factors and clustering demand patterns.

2.2 Production Planning Method

The production planning method is determined
based on customer requirements and the
company s production and inventory manage-
ment strategy. Four major methods are wide-
ly used. The representative production plan-
ning methods are ‘Make to Stock (MTS)" and
‘Make to Order (MTO)'. The other three are
‘Assemble to Order (ATO)’, Make to Order
(MTO)’, and ‘Engineer to Order (ETO).
(Schroeder, 2013)

Manufacturing to stock (MTS) involves pro-
ducing products in advance, storing them in
inventory, and supplying them to customers
upon request. This method minimizes the
time interval between production and supply

and is suitable when market demand is pre-
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dictable and volatility is relatively low.
Assemble-to-order (ATO) is a method of
assembling products according to the customer’s
order after it is received. Some products are
produced in advance and stored in inventory,
but the final product is assembled after the
order is placed. It is an intermediate form
between MTS and MTO. It holds inventory in
the form of intermediate products or major
parts and then assembles them into finished
products upon customer order.
Manufacturing to Order (MTO) begins prod-
uct production upon receipt of a customer's
order. This method can significantly reduce
product inventory costs and provide custom-
ized products. However, since product pro-
duction begins after the order is placed, the
supply time may be longer than MTS or ATO.
Design-to-order (DTO) is a process where a
product is designed according to customer re-
quirements and then produced according to the
design. This approach enables highly custom-
ized product offerings that cater to the com-

plex or unique needs of individual customers.

2.3 Traditional Demand Forecasting Method

Demand forecasting is crucial for managing
a company's production plan, inventory, and
dictions are generated using a range of method-
ologies, each with its strengths and weaknesses.
(Wisner, 2016) Among the existing demand
forecasting methodologies, the most widely
used is time series analysis, which includes

moving averages and exponential smoothing

methods, and predicts future sales volumes
based on past sales data. Many companies have
preferred this statistical method due to its
simplicity and ease of interpretation. However,
they assume that past data patterns will
continue, which is not always the case in real
market conditions. Additionally, statistical
methods have limitations because they strug-
gle to effectively handle complex, nonlinear
patterns or multivariate time series data.

The moving average method predicts future
values by calculating the average of data over
a specific period for time series data analysis.
This method is effective for data where trends
or seasonality are not readily apparent, and
is also advantageous in reducing noise in
time series data. The exponential smoothing
method is a weighted moving average approach
that more rationally addresses the weaknesses
of the moving average method, specifically
the irrationality of weight selection criteria
and the determination of the target period N.
Meanwhile, the ARIMA (Auto Regressive
Integrated Moving Average) model is one of
the core methodologies for analyzing time
series data and is particularly effective in
predicting linear patterns based on temporal
changes in the data. (Kang, 1978)

In contrast, machine learning-based demand
forecasting methods excel at handling non-
linear patterns and multivariate data. It can
provide more powerful solutions to real-world
problems where multiple factors affect demand.
However, machine learning methodologies have

the disadvantage that model interpretation is
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more challenging than statistical methodologies,
and problems such as overfitting may arise.
In this study, we propose a demand fore-
casting methodology that utilizes the Long
Short-Term Memory (LSTM) model. LSTM
performs exceptionally well in processing da-
ta with long-term dependencies, which is par-
ticularly useful for complex time series data,
such as demand forecasting for steel products.
Additionally, LSTM has an excellent ability
to process multivariate time series data. It is
a crucial factor in predicting the demand for
steel products, as various factors, including
market conditions, economic environment, and
shifts in customer demand, influence it. Using
LSTM, demand can be predicted by considering
these various factors simultaneously, resulting
in more accurate forecast results. Using these
advantages of LSTM, a demand prediction
model for steel products was developed. This
model overcomes limitations found in existing
methodologies, allowing more accurate and
reliable demand forecasting results to be

derived.

2.4 LSTM Time Series Forecasting Method

Long Short-Term Memory (LSTM) is a type
of Recurrent Neural Network (RNN) that
excels at processing time series data. LSTM
enhances the structure of the basic RNN,
enabling it to learn long-term patterns in
time series data. This property is particularly
useful in problems such as demand forecasting,

where patterns over time are important.

Additionally, LSTM can process multivariate
time series data. Predictions can be made
by considering multiple time series data
simultaneously. For example, various factors
such as product type, price, supplier’s pro-
duction capacity, and competitor situation can
be considered when forecasting demand for
steel products.

However, there are several caveats when
using LSTM. Because LSTM has many pa-
rameters, overfitting problems may occur when
the training data is insufficient. Additionally,
since learning an LSTM model is time-consuming
and computationally intensive, an appropriate
model structure and learning strategy must
be selected, considering these factors. As
such, LSTM can effectively process time ser-
ies data and is well-suited for applications
such as demand forecasting for steel products.
LSTM enables the learning of complex pat-
terns in time series data and the prediction
of future demand by considering multiple fac-
tors simultaneously. It enables limitations
found in existing forecasting methodologies
to be overcome, thereby improving demand
forecasting accuracy.

In this study, a demand forecasting model
for steel products was developed using Long-
Short-Term Memory (LSTM) networks. It pre-
sented a new approach to the demand fore-
casting problem in the steel industry, and
the advantages of LSTM could be considered

an alternative to the existing safety stock.
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IIl. Research Methodology

3.1 Data Collection and Preprocessing

To learn LSTM demand forecasting, order
quantity data for steel products from small
and medium-sized companies that produce
corrugated steel pipes was collected from their
ERP systems. The main characteristics are
that large-scale projects occur, orders exceeding
1,000 tons are processed per month, and the
cycle is not constant. Also, there is a charac-
teristic that the low-order volume persists
for approximately three months after a large
order is placed.

Additionally, relevant statistical data and
reports were collected to reflect external fac-
tors, including economic indicators and trends
in the steel market.! The data collected this
way was used to understand demand patterns
for steel products and predict future demand.

The preprocessed data was divided into
training data and test data. Of the training
data, 70% was used for learning and 30%
for validation. Data from the last 24 months
was used as test data to evaluate prediction
performance. A method is implemented where
the model learns from past patterns and pre-
dicts future demand based on these. The
training data constructed this way was used
to train the LSTM model. Each input sequence
includes features such as order quantity for
the past n months, construction material in-

dex, construction economy statistics, industrial

production index, other construction raw ma-

terials, and hot-rolled futures index.

3.2 Multivariate Variable Selection and Model
Structure

This study selected various variables to pre-
dict demand for steel products. The selected
variables mostly included orders for steel
products and economic indicators related to
the steel market.

Meanwhile, the LSTM model developed in
this study comprises an input layer, a hidden
LSTM layer, and an output layer. The input
layer accepts variables such as demand for
steel products, construction economy statistics,
the construction material index, the industrial
production index, other construction raw ma-
terials, and the futures index. It passes this
information to the hidden Long Short-Term
Memory (LSTM) layer. The hidden LSTM layer
updates its internal state based on this input
information, which is used to remember past
events and predict future outcomes. Finally,
the output layer predicts the order quantity
of steel products for the next three months
based on the internal state of the LSTM layer.

The model’s learning was conducted to min-
imize the difference between the predicted
and actual output for a given input sequence.
For this purpose, this study used the Mean
Squared Error (MSE) loss function and the
Adam optimization algorithm. The Early Stopping
technique, included in Keras, was also applied

during the learning process to prevent overfitting.
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3.3 Learning and Evaluation Methods

In this study, we adopted a clear and sys-
tematic approach to learning and evaluating
multivariate long short-term memory (LSTM)
models. This section provides a detailed de-
scription of these methods, discussing the
primary techniques and metrics employed for
training and evaluating LSTM models.

The multivariate LSTM model is learned
through backpropagation, which occurs in
temporal order. It enables the model to learn
the patterns in time series data effectively.
Adam (Adaptive Moment Estimation) was used
as an optimization algorithm to learn the
LSTM model. Adam adaptively adjusts the
learning rate, showing effective performance
in complex models such as LSTM.

This study divided the entire dataset into
learning, validation, and testing datasets to
determine the model’s predictive performance.
It is done to prevent the model from overfitting
and obtain results that more accurately reflect
its actual performance. Additionally, this study
employed a learning curve to monitor changes
in model performance throughout the training
process. The learning curve visualizes the
training loss and validation loss by epoch,
enabling them to monitor he model’s learning
status in real-time. Through this process,
problems such as overfitting and the learning
rate were identified and promptly adjusted.

The performance of an LSTM model is highly
dependent on the selected hyperparameters.

Therefore, finding suitable hyperparameters

is crucial for optimizing model performance.
This study employed a grid search to identify
the hyperparameter combination that yielded
the best performance. Grid search is a method
of exploring all possible hyperparameter com-
binations and evaluating the performance of
each combination to find the optimal combination.
Through this method, this study systemati-
cally conducted the learning and evaluation
of a multivariate LSTM model for predicting
demand for steel products. It ensures effec—
tive learning and accurate performance eval-
uation of the LSTM model, which is crucial
for enhancing prediction performance in real-
world situations. This approach can be ap-
plied to demand forecasting in the steel and
various other industries, leading to more ef-
fective inventory management and production
planning. The primary indicators used to eval-
uate the model’s performance were the mean
absolute error (MAE), the mean absolute per-
centage error (MAPE),
squared error (RMSE).

and the root mean

IV. Research Results

4.1 Linear Demand Forecasting Techniques
(Moving Average, Exponential Smoothing,
ARIMA)

The conventional moving average method
was employed to compare LSTM performance

and serve as a comparison group. The moving
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average method is a simple yet effective way
to reduce noise in time series data and clearly
express the underlying structure of the data.
In this study, we employed the moving aver-
age method to predict demand over the last
24 months and compared the results with the
actual values.

According to the experimental settings, the
window size of the moving average method
was set to 6. Each forecast reflects the aver-
age demand over the previous six months. As
shown in Figure 1, the Root Mean Square
Error (RMSE) of the prediction performed
under this setting was measured to be 143
tons. RMSE is the square root of the mean
square error between predicted and actual
values. A lower value means better prediction
performance.

The moving average method had the ad-
vantage of being simple to calculate and having
a fast calculation speed: however, forecasting
using this method had several limitations.
Because the moving average method relies on
linear patterns in data, predicting periods of
high volatility, such as rapid increases in or-
der volume, has been difficult. Additionally,
because the moving average method makes
predictions using only past average values, it
does not accurately reflect complex patterns in
time series data, such as trends or seasonality.
These results suggest that the moving aver-
age method can only match the trend at a ba-
sic level. It is an important point to consider
in the follow—up work of this study, suggesting

the need to introduce a more complex time

series prediction model.

The exponential smoothing method in this
study was performed by setting the smoothing
coefficient to 0.2. It was implemented using
the Exponential Smoothing class of ‘stats
models’, and this class performs predictions
by assigning different weights to past data at
each point in time. Using the exponential
smoothing method established in this matter,
demand for the last 24 months was predicted
and compared with the actual value. As a re-
sult, the RMSE of the prediction using this
method was measured to be 148 tons. It rep-
resents 444 tons, the tolerance value meas-
ured at the 3-sigma level of prediction per-
formance, indicating that a difference of up
to 20 coils or more can occur. (Figure 2)

While the exponential smoothing method
demonstrated comparable performance to the
traditional safety stock setting and linear op-
eration, its ability to predict non-linear pat-
terns was limited. Due to its assumption of a
linear pattern, which challenges forecasting
scenarios such as a sudden surge in order
volume. As a result, the method was constrained
to tracking trends, a significant limitation
identified in this study.

The ARIMA demand forecasting technique
is called the Python Stats model library and
utilizes the ARIMA method. In the ARIMA
model, p, d, and q each have the following
meanings. The p-value corresponds to the
order of the autoregressive (AR) part, which
describes the degree to which past values in-

fluence current values. The d value refers to
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the order of difference required to convert
the original time series data into data with
stationarity. The q value is the order of the
moving average (MA) portion. It explains how
past forecast errors affect current values. These
three parameters must all be non-negative
integers: the larger the value, the more in-
formation the model must consider, thereby
increasing computational complexity. Selecting
suitable values for these parameters sub-
stantially impacts the model’s performance.
In this study, the p-value was changed from
1 to 12, the d-value was changed from 0O to 5,
and the g-value was changed from O to 5
(i.e., 12, 1). When set to 2, irregular behav-
ior was shown to be predicted to some extent.
The RMSE of the ARIMA method was at the
129-ton level, showing the best performance

among linear prediction techniques.

4.2 Univariate LSTM

An attempt was made to improve the accu-
racy of steel demand forecasting by applying
the LSTM model. LSTM is widely recognized
as a structure that can effectively identify
long-term patterns in time series data. This
attempt aims to overcome the limitations of
existing linear methods, specifically their in-
ability to predict when order quantities fluc-
tuate rapidly. The experimental setup focuses
on demand forecasting for steel products. The
basic settings for various elements for this
are as follows.

Data Set: The data used in the univariate

LSTM model experiment are the order volumes
of steel products over the past 12 years. ERP
provided this data to a steel manufacturer,
allowing it to reflect the complexity and di-
versity of actual industrial sites. There were
158 months of data, of which 94 months
(approximately 60%) were used for learning,
40 months (approximately 25%) were used
for validation, and the remaining 24 months
(approximately 15%) were used as test data.

Model setup: The LSTM model consisted of
two LSTM layers and one fully connected
(Dense) layer. The LSTM layer is responsible
for remembering information for a long period
and predicting the future based on it. The
Dense layer receives the output from the
LSTM layer and generates the final predicted
value. The number of neurons in the LSTM
layer was set to 50 and 100, respectively, and
the number of neurons in the Dense layer
was set to 1. Based on data from the past six
months, the model set up in this way pre-
dicts the order quantity of steel products for
the next three months.

Training setup: The Adam optimization al-
gorithm and Mean Squared Error (MSE) loss
function were used to train the LSTM model.
The Adam optimization algorithm dynamically
adjusts the learning rate for each parameter,
and the MSE loss function minimizes the
squared difference between the actual and
predicted values. Additionally, Early Stopping
and Dropout techniques were applied to pre-
vent overfitting. Early Stopping is a techni-

que that terminates learning early if per-



Predicting Steel Product Order Quantity Using LSTM {Long Short=Term Memary) Machine Learning Technique - Demand Forecasting Using Multivariate Time Series Data - 123

formance on the validation dataset does not
improve for a certain period. Dropout is a
technique that controls the complexity of the
model by randomly deactivating some neu-
rons during the learning process.

Accordingly, this study implemented a uni-
variate LSTM model. Through this, we pre-
dicted steel demand for the last 24 months
and measured the prediction performance by
comparing it with the actual value. As shown
in Figure 4, the Root Mean Square Error
(RMSE) of the LSTM prediction was meas-
ured to be 158 tons. It indicates that a dif-
ference of up to 25 coils or more occurred
when compared to the tolerance value of 474
tons, allowing for a prediction error at the
three-sigma (99.7%) level.

However, these results suggest that pre-
dictions through the LSTM model have not
reached a practical level. In the corrugated
steel pipe manufacturing industry, which ac-
counts for a significant portion of fixed costs,
this level of forecast error results in sub-
stantial increases in inventory costs, leading
to substantial economic losses. It can be es-
pecially problematic in MTO systems. In the
MTO method, production begins after an or-
der is received, so it is crucial to accurately
predict the order’s timing. However, the uni-
variate LSTM model in this study had diffi-
culty predicting these order timings. Based on
these results, this study will consider ways to
improve the performance of the LSTM model
in the next section. To this end, it plans to
optimize the learning method of the LSTM

model through hyperparameter tuning.

4.3 Univariate LSTM Hyperparameter Adjustment

In this study, we considered hyperparameter
tuning to improve the performance of uni-
variate LSTM models. Among various hyper-
parameters, we sought to improve the model s
prediction performance by tuning the lookback
value, epoch value, batch size value, number
of LSTM neurons (units), number of neural
network layers, and learning rate.

In conclusion, changes in the lookback val-
ue had the greatest impact on prediction per-
formance among all hyperparameters. It con-
firmed that utilizing past information at ap-
propriate time intervals plays a critical role
in improving the performance of the LSTM
model.

In this study, 100,800 calculations were
performed considering the combination of
hyperparameters considered above. The final
result obtained through these extensive cal-
culations showed an RMSE of 102 tons, which
is superior to previous prediction methods.
However, this figure remains outside our ac-
ceptable range.

The primary challenge in forecasting using
only univariate LSTM was that it required
time to accurately predict the timing of a rapid
increase in order volume. Although LSTM ef-
fectively predicts the future by learning from
past time series data patterns, it can easily
miss important information, such as the timing

of orders. This study’s prediction was also
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performed using only a single variable, past
order quantity. Although this method fully
understands the patterns of time series data,
it cannot account for other factors that may
explain the increase in order quantity. For
example, various external factors such as eco-
nomic conditions at a specific time, changes
in customer behavior, and market volatility
significantly impact order quantity. Still, be-
cause these factors were not included in the
univariate forecasting model, forecasting per-
formance was limited.

As a result, the performance of the prediction
model using LSTM improved. However, elim-
inating or reducing the prediction error to an
acceptable range still needs improvement.
Future research should aim to develop more
accurate methods for predicting rapid increases

in order volume using multivariate analysis.

4.4 Comparison of Multivariate LSTM and
Prediction Performance

Figure 5 presents the results of the TrainTest
values for actual and predicted demand for raw
steel materials after adding variables to the
multivariate LSTM model and tuning a series
of hyperparameters, following a similar process
to the one described in the previous section.

First, the demand forecast should be based
on the construction and civil engineering
industry. The possibility of using it for orders
increases significantly, reflecting the trend.
While the existing linear demand forecasting

technique, or univariate LSTM method, relies

on a single indicator, the multivariate LSTM
model enables more accurate demand fore-
casting by utilizing multiple indicators, such
as those related to the construction and civil
engineering economy.

One powerful advantage of these multivariate
LSTM models is their ability to predict rapid
increases in demand. Rapid fluctuations in
demand significantly impact a company’s pro-
duction and orders, making it crucial to pre-
dict them accurately. The multivariate LSTM
model can predict this rapidly changing de-
mand by considering various indicators to-
gether, which allows companies to establish
production plans more efficiently.

Figure 6 displays the order volume and
forecast for the past 24 months. The RMSE
indicates an error of 53 tons in the monthly
forecast. It can be calculated as 159 tons based
on 30 (99.7%), which can be understood as
an error that occurs at the level of about seven
coils. This level of error is acceptable in ac-
tual practice, considering storage costs. This
figure was attainable because the rapid de-
mand forecast was partially predicted and is
presumed to have been derived from various
variables and appropriate lookback values.
Additionally, such accurate predictions greatly
help shorten delivery times, ultimately leading
to favorable results in winning orders. Therefore,
these prediction models can be very useful in
management activities.

In this manner, the multivariate LSTM
model outperforms existing demand forecasting

techniques. However, applying advanced op-



Predicting Steel Product Order Quantity Using LSTM {Long Short=Term Memary) Machine Learning Technique - Demand Forecasting Using Multivariate Time Series Data - 125

timization techniques or adding more effec-
tive time series features that predict order
timing can improve performance. Research and
further attempts on this need to continue.

The multivariate LSTM model outperforms
existing demand forecasting techniques, par-
ticularly in predicting rapid demand changes
and capturing trends. It enables companies
to establish more efficient production and or-
der plans and obtain valuable data for man-
agement activities. Further developing this
model is an important task at present.

The LSTM model’s performance was com-
pared with existing time series forecasting
methodologies. The performance comparison
was based on the root mean square error
(RMSE), and the results obtained are pre-
sented in Table 1.

These results show that the multivariate
LSTM performs best. The Multivariate LSTM,
which yielded the lowest values in all in-
dicators of MAE, MAPE, and RMSE, was the
technique that produced the lowest prediction
error. It is because a multivariate LSTM per-
forms predictions by considering multiple var-
iables simultaneously. Since world demand
results from the interaction of various com-
plex factors, LSTM, which can handle such
multivariate variables, can well reflect this
situation. This improvement in prediction per—
formance is compared to other methods that
use a single variable.

Overall, these performance comparison re-
sults clearly show that in actual demand fore-

casting, various factors interact in a complex

manner to determine demand. Therefore, mul-
tivariate LSTM, which can account for all these
factors, provides the most accurate prediction.
Of course, even when using a multivariate
LSTM, the importance and interaction of each
variable must be properly considered, and a
sufficient amount of data and an appropriate
learning algorithm are also required. However,
upon careful consideration, multivariate LSTM
can be a highly effective tool for demand

forecasting.

4.5 Variable Importance Analysis

The multivariate LSTM model employed in
this study enhanced predictive performance
by utilizing various economic indicators and
historical order data as input variables. However,
the model’s structure makes it difficult to ex-
plain “why a particular prediction was made
directly.” To address this, an interpretability
technique (Explainable Al) was applied after
model training. For the 13 input variables
used in this study, variable importance was
analyzed using SHAP (SHapley Additive
exPlanations) values and the Permutation
Importance technique.

The SHAP (SHapley Additive exPlanations)
value is an interpretation technique based on
cooperative game theory that quantitatively
assesses the contribution of each input varia-
ble to model predictions. A higher absolute
value of a SHAP value generally indicates a
greater influence of the variable on the model
output. For example, a SHAP value of 0.05
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or higher indicates a significant contribution
to the prediction, while a value closer to 0
indicates a minimal influence.

Permutation Importance is a technique that
measures the performance degradation (e.g.,
increased Root Mean Square Error) that oc-
curs when the values of a specific variable are
randomly shuffled, based on the predicted
performance of a trained model. A larger in-
crease in RMSE indicates that the variable
plays a significant role in model performance.
For example, an RMSE increase of 10 tons or
more indicates a significant impact on pre-
dictive performance, while an RMSE increase
of 2 tons or less indicates a minor impact.
Permutation Importance mitigates model opacity
(black-box) issues and has the advantage of
being applicable regardless of model structure.

It was executed to increase model inter-
pretability and identify the factors that have
the most significant impact on prediction
results. The analysis results identified rebar
domestic supply and rebar production as the
most important variables. The domestic sup-
ply of rebar had a SHAP value of 0.090 and a
9.2-ton increase in RMSE in the permutation
importance analysis. It suggests that these
variables make a significant contribution to
model prediction accuracy. Following this,
civil engineering (public) (SHAP = 0.072,
RMSE = 7.1 tons) and galvanized steel pro-
duction (Galvanized Steel Prod., SHAP =
0.062, RMSE = 7.0 tons) were identified as
being of high importance. Conversely, primary

metal products (PPI) showed the lowest im-

portance, with a SHAP value of 0.027 and an
RMSE of 2.7 tons, indicating a limited rela-
tive influence. (Table 2)

These results demonstrate that variables
closely related to steel supply and demand
(domestic demand, production, and construction
performance) play a key role in demand fore-
casting, and that price indicators alone have
limited explanatory power. However, some
variables contributed only slightly to improved
forecast performance, suggesting the need to
reexamine variable selection strategies for
future model simplification and performance
optimization. Moreover, LSTM models reflect
interactions between input variables, making
it difficult to isolate the influence of individual
variables completely. Therefore, SHAP and
Permutation Importance should be used as
reference metrics: results may vary depending
on the data characteristics and model structure.
(Figure 7)

V. Concluding Remarks

In this study, we developed a model to pre-
dict order quantities in the steel industry us-
ing a multivariate Long-Short-Term Memory
(LSTM) neural network. This model effectively
captures the characteristics of complex time
series data and can accommodate a range of
external variables. It showed higher perform-
ance than existing time series forecasting

methodologies in predicting order quantities
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in the steel industry.

The results of this study show that the LSTM
model can effectively solve complex time ser-
ies prediction problems. The LSTM model en-
ables predictions that consider complex pat-
terns and various external variables through
its ability to process data with long-term de-
pendencies and multivariate time series data.

Future research can explore various LSTM
structures and identify ways to further en-
hance the performance of the LSTM model by
comparing it with other time series prediction
models. Additionally, it can improve the model s
prediction accuracy by more accurately ana-

lyzing the effects of various external variables.

5.1 Future Research Directions

This study confirmed that an LSTM-based
multivariate time series model outperforms
traditional forecasting methods (moving aver—-
age, ARIMA). However, further research is
necessary to address the complexity of industrial
environments and the changing character-
istics of data. To further improve forecast ac-
curacy and interpretability, the following ex-

tensions are proposed.

* Introduction of an Attention Mechanism
and Reflection of Seasonality: The at-
tention mechanism has the advantage of
dynamically learning the importance of
specific time points or variables in time-
series data, thereby mitigating the long-
term dependency problem of LSTMs. Steel

demand, in particular, is strongly influ-
enced by the construction cycle and sea-
sonal factors, so simply inputting these
patterns as a time series is insufficient.
Future research should incorporate sea-
sonality as a categorical variable and pay
attention to reflect the interactions be-
tween variables and the importance at
each time point. It is expected to enable
the forecasting model to learn the char-
acteristics of specific periods more pre-
cisely (e.g., a decrease in construction
demand during the winter season, a surge
during the peak season).

A Comparative Study of GRU (Gated
Recurrent Unit): GRUs have a simpler
structure and fewer training parameters
compared to LSTMs, offering advantages
in computational efficiency and learning
speed. In environments with a limited
dataset size or real-time predictions, GRUs
may be more suitable. Therefore, further
research is needed to compare the per—
formance of GRUs and LSTMs based on
the same variable set and quantitatively
assess factors such as the number of pa-
rameters, training time, and the like-
lihood of overfitting. In particular, given
the difficulty of securing all influencing
variables in real-world industrial set-
tings, it is necessary to examine whether
the simplified GRU structure can con-
tribute to improved prediction stability

in practice.

* Transformer-based Model Exploration
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and Hyperparameter Optimization: In
this study, a grid search was employed to
identify the optimal parameters. However,
this method suffers from limitations, in-
cluding a limited search scope and high
computational costs. Exploration techni-
ques based on Bayesian Optimization,
Hyperband, and AutoML can improve
search efficiency and automatically de-
rive optimal performance. In particular,
automating optimized parameter settings
for various model structures, such as
LSTM, GRU, and Transformer, will sig-
nificantly enhance practicality in industrial
applications.

* Expanding Data Diversity and Reflecting
External Factors: The current model
is limited to internal order data from
ERP and some macroeconomic indicators.
However, actual steel demand is influ-
enced by external factors, including project
size, regional construction market trends,
global raw material prices, competitor
trends, and policy changes. Therefore,
future research needs to integrate diverse
external data and enhance data cleans-
ing and feature engineering techniques.
In particular, developing models that in-
tegrate unstructured data (e.g., news
articles, policy reports) can simultaneously

improve forecast accuracy and timeliness.

5.2 Practical Implications and ERP Integration

The LSTM-based demand forecasting model

proposed in this study can significantly en-
hance the efficiency of supply chain manage-
ment (SCM) decision-making by integrating
it with Enterprise Resource Planning (ERP)
systems. Specifically, by implementing fea—
tures that automatically adjust order timing
and safety stock levels, it can complement
the limitations of existing empirical and fixed
decision-making methods.

Current procurement methods are primar-
ily based on historical average consumption
and fixed safety stock levels, making it diffi-
cult to respond quickly to economic fluctua-
tions or large-scale orders early in a project.
It often leads to order delays that exceed the
average lead time of two to three months,
potentially resulting in delayed delivery and
penalties. In contrast, integrating the pro-
posed predictive model with an ERP system
enables the prediction of demand in advance
and the generation of timely orders. For ex-
ample, if an LSTM model predicts demand for
approximately 1,200 tons of steel over the next
three months, the ERP procurement module
can automatically generate purchase requi-
sitions based on this forecast. This process
accelerates the ordering process compared
to conventional methods, minimizing the risk
of delivery delays due to inventory shortages.
Furthermore, by optimizing safety stock,
inventory holding costs can be significantly
reduced.

Quantitative simulation analysis results
showed that under the existing operating

method, average monthly inventory was main-
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tained at 1,000 tons, resulting in storage costs
of approximately 30 million won. In contrast,
the predictive model-based optimization sce-
nario reduced the average monthly inventory
to 850 tons, resulting in monthly storage costs
of approximately 25.5 million won, which trans-
lates to a savings of approximately 4.5 million
won (approximately 15%). By avoiding poten-
tial penalties for late delivery (approximately
5 million won per case), the annual savings
could exceed tens of millions of won.
ERP-integrated predictive operations sys-
tem holds significant potential not only in
make-to-order (MTO) manufacturing but al-
so in various industries with long lead times
and high demand volatility. Additionally, by
integrating the model proposed in this study
with a manufacturing execution system (MES)
or a supply chain management (SCM) plat-
form outside of an ERP, comprehensive opti-
mization encompassing production planning,
purchasing, and logistics planning can be
achieved. It is expected to lead to strategic
outcomes beyond simple cost savings, including
enhanced supply chain resilience and im-

proved delivery reliability.

VI. Conclusion

This study developed and validated a mul-
tivariate LSTM (Long Short-Term Memory)-
based demand forecasting model to mitigate

uncertainty and volatility arising from the

procurement and supply chain management
(SCM) environment of the steel industry.
The proposed model demonstrated superior
forecasting accuracy compared to traditional
time-series forecasting techniques (e.g., moving
averages, ARIMA), particularly in effectively
reflecting nonlinear demand patterns and
multidimensional economic indicators. This
model makes a significant contribution by
overcoming the limitations of existing single-
variable approaches and enabling the sophis-
ticated forecasting required in practice.

To enhance the model’s interpretability,
SHAP values and permutation importance were
applied to analyze the contribution of each
variable. The analysis results confirmed that
domestic rebar demand and production were
the major factors that had the greatest im-
pact on the model’s predictive performance,
supporting the industry’s strong correlation
between steel demand and domestic supply
and demand structure, as well as changes
in production volume. However, the LSTM
model’s structural nature, which compre-
hensively reflects inter-variable interactions,
limits its ability to isolate the independent
influence of individual variables completely.
It suggests the need for developing new ap-
proaches to enhance model interpretability in
future research.

In terms of practical applicability, this study
proposed an integration strategy with an ERP
system and quantitatively verified the effec-
tiveness of order automation and safety stock

optimization through simulation. The results
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showed that introducing a predictive model-
based operating system could reduce average
inventory by approximately 15% and reduce
storage costs by over KRW 4.5 million per
month. Also, by preventing penalties for de-
layed delivery, this strategy is expected to
save tens of millions of won annually. It will
be a key factor in securing real-world com-
petitiveness not only in the steel industry
but also in various manufacturing industries
with long lead times.

Future research should apply attention
mechanisms and Transformer-based archi-
tectures to mitigate long-term dependency
issues and further enhance forecast accuracy
by incorporating seasonal factors and project-
specific variables into the model. Furthermore,
designing hybrid models that integrate ex-
ternal data (e.g., economic indicators, policy
changes, raw material prices) and adopting
Bayesian Optimization and AutoML-based
hyperparameter exploration techniques can
be strategic alternatives for enhancing model
versatility and stability.

In conclusion, this study presents practical
solutions to mitigate uncertainty arising from
ordering and inventory management processes
in the steel industry, thereby enhancing cost
efficiency and delivery reliability. These re-
sults are expected to serve as a foundation
for implementing smart supply chain man-
agement (SCM) and establishing a predictive

decision-making system.

Endnotes

! Trends in construction materials index (Bank of
Korea Economic Statistics System), 2023.

Reinforcing bar supply and demand trends (Korea Steel
Association), 2023.

Industrial activity trends: production, investment, etc.
(Statistics Korea), 2023.

Public Administration Sector Industrial Production
Index (Construction Association of Korea), 2023.
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(Table 1) Comparison of test data prediction performance of demand prediction techniques
Demand Prediction Moving Exponen‘tial ARIMA Univariate Multivariate
Methods Average Smoothing LSTM LSTM
MAE 106 108 98 76 31
MAPE 0.39 0.36 0.31 0.23 0.18
RMSE 143 148 129 102 53

(Table 2) Contribution by variable based on Absolute SHAP value and Permutation importance

. Permutation Importance
Variable(Feature) SHAP Average value (RMSE Increase amount, tons)
Steel Futures Index 0.045 4.2
Construction Materials Index 0.038 3.8
Primary Metal Products Price Index
(Domestic Shipments) 0.030 3.1
Primary Metal Products Price Index
(Construction Use) 0.027 21
Civil Engineering (Private) 0.060 6.5
Civil Engineering (Public) 0.072 7.1
Construction Market (Private) 0.066 6.6
Construction Market (Public) 0.058 6.0
Rebar production 0.085 8.8
Domestic rebar demand 0.090 9.2
Domesu.c galvanized steel sheet 0.062 70
production
Manufacturing inventory levels 0.041 4.5
Av'e.ragg manufacturing capacity 0.036 39
utilization rate
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Moving Average Forecast (RMSE: 143.32)

1000

800

Demand

400

135 140 145 150 155
Time

(Figure 1) The demand forecast for the last 24 months has been based on the moving average

Exponential Smaothing Forecast (RMSE: 147.91)
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Demand

400

135 140 145 150 155
Time

(Figure 2) The demand forecast for the last 24 months has been calculated using exponential smoothing

ARIMA Forcast (RMSE:129.28)
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(Figure 3) The demand for the last 24 months was forecasted using the ARIMA method
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(Figure 4) The univariate LSTM model predicted the demand for the last 24 months

Train/Test vs. Predicted Values over Time
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(Figure 5) Demand the actual/predicted value of the multivariate LSTM model (Train/Test)
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(Figure 6) Demand for the last 24 months is predicted by multivariate analysis
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Variable Importance Analysis {(Absolute SHAP)

Mean SHAP Value (Absolute) Permutation Importance

Steel Futures Index 0.045. Steel Futures Index 4.2

Construction Material Index Construction Material Index

Primary Metal PPl (Domestic) Primary Metal PPl (Domestic)

Primary Metal PPI (Construction Ratio) Primary Metal PPI (Construction Ratio)
Civil Eng. (Private) Civil Eng. (Private)
Civil Eng. (Public) 0,072 Civil Eng. (Public)
Construction (Private) 0.066 Construction (Private)
Construction {Public) Canstruction {Public)

Rebar Production 0.085 Rebar Production 88

Rebar Domestic Supply a.090 Rebar Domestic Supply

Galvanized Steel Prod. 0062 Galvanized Steel Prod. 70

Mfg. Inventory Level Mfg. Inventory Level

Mfg. Operating Rate 0.036 Mfg. Operating Rate 39

0.04 0.06 0.08 4 6 8
Mean |[SHAP| Value RMSE Increase (tans)

(Figure 7) Variable Importance Analysis(Absolute SHAP value and Permutation Importance)
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